Neuroprotective effect of Tagara, an Ayurvedic drug against methyl mercury induced oxidative stress using rat brain mitochondrial fractions

نویسندگان

  • Dhanoop Manikoth Ayyathan
  • Rajasekaran Chandrasekaran
  • Kalaivani Thiagarajan
چکیده

BACKGROUND Methyl mercury (MeHg), an important environmental toxicant is implicated in neurological disorders such as Hunter-Russell syndrome and Autism. Therefore, the present work is in search of new drugs that can alleviate MeHg toxicity. In this connection, Tagara, an ayurvedic drug is used for assessing its neuro protective effect against MeHg toxicity. METHODS In the present study, we assessed the phytochemical contents of Tagara by colorimetric and HPLC analyses. The neuroprotective effect of Tagara on MeHg induced neurotoxicity was measured in terms of viability by MTT assay and oxidative stress in terms of catalase activity, glutathione and thiobarbituric acid reactive substance levels. Further, the chelating effect of Tagara towards MeHg was performed to identify the molecular mechanism. Statistical analysis was done by statistical package for social sciences (SPSS) version 16.0. RESULTS The results demonstrated that Tagara contains significant amounts of phenols and flavonoids. Also, HPLC analysis of Tagara revealed the presence of essential oils such as hydroxyvalerenic and valerenic acids. Our results demonstrated that exposure of rat brain mitochondrial fractions to MeHg resulted in a dose dependent death in MTT assay and IC50 value was found to be 10 μM. However, a 250 μg dose of Tagara effectively prevented MeHg induced mitochondrial damage. The oxidative stress caused by MeHg results in elevated levels of reactive oxygen species as evidenced by elevated TBARS (Thiobarbituric acid-reactive substances) levels and diminished catalase enzyme activity and glutathione content. However, Tagara at 250 μg concentration offsets these alterations caused by MeHg. Further, Tagara also diminished GSH oxidation caused by MeHg, confirming its chelating effect, one of the molecular mechanisms that triggers protection against oxidative damage. CONCLUSION Our results revealed that MeHg induced toxicity is predominantly mediated through oxidative stress mechanism and the propensity of Tagara to abolish such reactions. Hence, we propose that Tagara with a source of potential neuroprotectants may be a useful approach to alleviate MeHg associated neurotoxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective effects of fractions from Artemisia biennis hydro-ethanolic extract against doxorubicin-induced oxidative stress and apoptosis in PC12 cells

Objective(s): This study was designed to indicate whether different fractions from Artemisia biennis hydroethanolic extract could provide cytoprotection against oxidative stress and apoptosis induced by doxorubicin (DOX) in rat pheochromocytoma cell line (PC12). Material and Methods:Cell viability was determined by MTT assay. Also, activation of caspase-3 and superoxide dismutase were evaluated...

متن کامل

Curcumin Ameliorates Sodium Valproate Induced Neurotoxicity through Suppressing Oxidative Stress and Preventing Mitochondrial Impairments

Background and purpose: Curcumin is a natural polyphenolic compound in turmeric (Curcuma longa). Curcumin has potent free radical scavenger and antioxidant properties that could significantly reduce oxidative damage. Oxidative stress and mitochondrial dysfunction contribute to valproate sodium induced tissue damage. This study investigated the protective effects of curcumin against valproate so...

متن کامل

The study of the neuroprotective effects of curcumin, against homocysteine intracerebroventricular injection –induced cognition impairment and oxidative stress in the rat

Introduction: Aging is the major risk factor for neurodegenerative diseases and oxidative stress is involved in the pathophysiology of these diseases. Oxidative stress can induce neuronal damages and modulate intracellular signaling, ultimately leading to neuronal death by apoptosis or necrosis. Methods: In this study, we investigated the possible antioxidant and neuroprotective properties o...

متن کامل

Gemfibrozil protect PC12 cells through modulation of Estradiol receptors against oxidative stress

Introduction: Neurodegenerative diseases are progressive disorders that could impair neuronal functions and structures. Oxidative stress and mitochondrial dysfunction are involved in the etiology of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and etc. Gemfibrozil is used as a therapeutic drug for hyperlipidemia. It has been shown that gemfibrozil is n...

متن کامل

Protective effects of organoselenium compounds against methylmercury-induced oxidative stress in mouse brain mitochondrial-enriched fractions.

We evaluated the potential neuroprotective effect of 1-100 µM of four organoselenium compounds: diphenyl diselenide, 3'3-ditri-fluoromethyldiphenyl diselenide, p-methoxy-diphenyl diselenide, and p-chloro-diphenyl diselenide, against methylmercury-induced mitochondrial dysfunction and oxidative stress in mitochondrial-enriched fractions from adult Swiss mouse brain. Methylmercury (10-100 µM) sig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015